Fill
up your 21-mile-per-gallon gasoline vehicle with $2.11-per-gallon gasoline,
and you are paying more than 10 cents per mile for fuel. Charge a 2.9-miles-per-kilowatt-hour
electric vehicle with 8.7-cents-per-kilowatt-hour electricity (U.S. national
averages), and you are paying only about 3 cents per mile. With dependence on
foreign oil clearly our most pressing energy (and perhaps international relations)
problem, it seems like a natural shift to move toward an electric-vehicle-based
society at one-third the cost. We have already started that shift, with recent
heightened interest in hybrid-electric vehicles. But the road ahead to more
energy independent vehicles is still a long one.
In Toyota City, Japan, 300 users share
50 Toyota Crayon neighborhood electric vehicles, which use a sophisticated
communications and control system to commute between their workplaces and train
stations. The system includes wireless tracking of the vehicles, keyless access
and Web-based car reservations. The project is exploring how to make car sharing
more convenient and usable. Courtesy
of Toyota.
Hybrid-electric vehicles, which are rapidly gaining popularity with both consumers
and manufacturers, help improve efficiency over conventional vehicles and avoid
the concern for limited range that has dogged electric vehicles. Yet they dont
offer the chance to operate on less expensive electrical power. Thats
where plug-in hybrid-electric vehicles come into play: They add larger battery
capacity and an electric plug for recharging for all-electric operation. And
going even one step further, vehicle-to-grid plug-in hybrid-electric
vehicles make the energy exchange a two-way process, making each car part of
the power grid.
Such a two-way plug allows the home and vehicle owner and the local utility
to take advantage of the extra electrical storage capacity in the vehicles
battery to meet peak demand, provide grid support services or respond to power
outages. This technology could be available soon its just a matter
of cost, consumer demand and leadership by manufacturers. The technology offers
lower fuel costs, home refueling convenience (and fewer trips to the gas station)
and reduced tailpipe emissions. It could make our cities cleaner and quieter,
while making electricity service more reliable and it could make a meaningful
difference in curbing petroleum consumption.
Alternatives needed
Demand in the United States far outstrips our domestic petroleum supply, leaving
the country vulnerable to high petroleum costs and disruptions for imported
oil. The transportation sector consumes two-thirds of U.S. oil, with highway
transportation alone consuming more than half. And transportation oil use has
a large effect on local environments and global climate change. The transportation
sector is the fastest growing source of emissions in the world. To make matters
worse, U.S. oil imports, projected to rise to 70 percent of consumption by 2025,
are the single largest component of the U.S. trade deficit.
So why not combat the problem by switching to a domestic, cheaper and more efficient
energy source for transportation? Most fuel alternatives to gasoline and diesel
are still derived either from petroleum and natural gas, which are becoming
increasingly scarce and expensive. The only current renewable alternative fuels
are ethanol and biodiesel, made in the United States mostly from corn kernels
and soybeans, respectively.
Biodiesel use is growing rapidly, but is still very small. Ethanol made from
corn or other grains and biodiesel fuels made from soybeans or other oil seeds
are expensive (see story, this issue). More critically,
they are only available in quantities sufficient for additive use. Ethanol is
blended into more than 30 percent of U.S. gasoline, but still totals only about
2 percent of total gasoline sales. Making ethanol from cellulose (the fibrous
bulk of most plant matter) and improving conversion technologies could greatly
expand the potential supply promising to significantly help displace
U.S. gasoline demand in the future. However, the ability to replace gasoline
with renewable liquid-transportation fuels is presently limited.
Another option hydrogen might burn cleanly in fuel cells, but
will be made from natural gas for the foreseeable future, or eventually may
use the biomass that would go into making ethanol. We need these alternatives
and improved fuel economy but we also need more diversity in our
energy portfolio to slow and then reverse this growing trend in petroleum use.
All these reasons have led to considerable interest in electric vehicles for
awhile. Even Henry Ford and Thomas Edison had electric vehicles at the turn
of the last century. Interest rekindled in the 1990s, as manufacturers were
mostly responding to regulations, but consumers were put off by the limited
range between charges. Now, though, consumers and manufacturers seem to have
gotten on the bandwagon for hybrid-electric vehicles that combine an electric
motor with an internal combustion engine. With higher fuel efficiency, longer
ranges between ordinary gas station fill-ups, and clean and quiet operation
in city traffic, the hybrids seem to have the best of both worlds but
perhaps additional refinements can make them even better.
Enter plug-in hybrids. One of many potential pathways being researched today,
these vehicles can yield even more oil savings and emission reductions than
regular hybrids in the near term and can pave the way to the much discussed
hydrogen-powered fuel-cell vehicles of the future. A couple of prototype plug-in
hybrid vehicles have already been manufactured or converted from hybrid vehicles
by entrepreneurial engineers. Prominent among plug-in hybrid projects is the
Mercedes-Benz Sprinter van being developed by DaimlerChrysler with partial sponsorship
by the Electric Power Research Institute (see sidebar, below).
Anticipated benefits of the plug-in hybrid Sprinter include up to 50 percent
fuel economy improvement and a 20- to 30-mile all-electric range.
Improved electric drive, power electronics, computer control and batteries that
are making hybrids mainstream also enable easy adoption of plug-in hybrids.
But plug-in hybrids differ from current hybrids in two ways. First, the typical
small battery pack in a hybrid vehicle sold today is replaced with a larger
battery, perhaps supporting 20 to 60 electrified miles per charge (depending
on the battery size). Second, the vehicle can be plugged into a standard low-voltage
home, office or garage outlet to charge the battery without the engine running.
Fifty percent of all U.S. vehicles travel less than 20 miles per day. Because
plug-in hybrids can travel this distance primarily using electric power, they
can run quietly, cleanly and cheaply for much of a typical days driving.
Like current hybrid vehicles, when the charge is used up or when the vehicle
exceeds battery capacity, it automatically switches to run on the vehicles
conventional fuel engine. The vehicles have on-board controls to prevent their
batteries from being drawn outside their charge limitations, to protect battery
life.
Cashing in on the grid
The extra
battery capacity for plug-in hybrids adds weight, takes up space and is not
cheap, probably on the order of $1,000 for every 10 miles of capacity. But,
at 7-cents-per-mile savings, those 10 miles of extra battery capacity are worth
about $250 per year, repaying the extra cost in less than four years. Fuel savings
may, however, only be the beginning of payback for the battery capacity of plug-in
hybrids.
The vehicle-to-grid hybrids battery
stores extra electricity for the home. Image courtesy of the Earth Science World
ImageBank.
The plug-in hybrid can also send power back to the grid, so that an electric
utility can draw on the vehicles battery to support the grid, or during
peak demand periods or power outages. This capability with the plug-in hybrid
is commonly referred to as vehicle-to-grid (V2G). Utilities might compensate
V2G car owners to borrow energy storage capacity, thereby pre-paying
for the extra battery capacity. In addition to this compensation for grid support
services, the vehicle owner could benefit from differential rates for off-peak
charging and peak contribution.
Why is this distributed storage capacity worth so much? Utilities supply various
types of electricity. Base-load power generators have high capital costs and
low operating costs, so they produce electricity at a relatively low per-unit
cost when running at a high capacity factor. Plants with lower capital costs
designed to meet peak loads have higher operating costs, so they are only run
during the highest demand periods.
Because demand is not completely predictable, utilities must also have some
units that can quickly respond to unexpected changes in demand. Grid support
or ancillary services point to this quick-response capability, which has been
estimated to cost $12 billion per year in the United States, 5 to 10 percent
of total electricity costs. If V2G hybrids can give and receive electricity
to and from the grid on demand, they could help reduce the cost of ancillary
services and peak power, while increasing the grids stability and reliability.
Electrical generation is only about 30 to 60 percent efficient, depending on
the age and type of generating plant, but conventional transportation is far
worse. The average cars internal combustion engine is able to make use
of only an abysmal 13 percent of its gasoline energy for propulsion. So, with
roughly 80 to 90 percent efficiency from its electric motor, a V2G hybrid using
even relatively inefficient electrical generation can be far more efficient
than a conventional vehicle. Make the electrical generation system more efficient
as is likely and the V2G system becomes even more efficient.
In addition to energy savings, compared to a traditional hybrid or conventional
vehicle, a V2G hybrid runs more on the electric motor than the gasoline engine,
making these two-way plug-in cars cleaner and quieter. The reduced toxic tailpipe
emissions will be offset to some extent by increased emissions from the utilitys
main grid generation facilities.
Calculating that tradeoff is highly complex, but California and other states
zero-emissions vehicle programs certainly attest to expectations that electric
vehicle operation is better for air quality. A recent California report on reducing
greenhouse gas emissions finds that on a life-cycle basis, using electric vehicles
emits only one-third as much greenhouse gas as using gasoline-powered vehicles.
Emissions from central generating plants are certainly easier to control than
from individual vehicles. The really big potential future improvement from using
electric charging to power V2G hybrids, however, will come from integrating
the technology with renewable energy and thereby reducing all potentially harmful
emissions.
A holistic approach
We can displace even more oil using V2G hybids, by turning to real and substantial
renewable energy options for electrical generation that the vehicles can plug
into. Imagine a whole renewable community with V2G hybrids in every homeowners
garage
Near-zero or zero-energy homes use geothermal heat pumps
or other efficient heating and cooling systems. Energy-efficient construction
and appliances dramatically reduce the homes need for power. And rooftop
photovoltaic (solar panel) systems supply most of the small amount of power
the house does need. Excess photovoltaic generation is used to charge the homeowners
V2G hybrid or is sold to the grid. To add value, the V2G hybrids battery
stores extra electricity for the home. And the local utility, which is providing
necessary grid power, generates as much energy as possible with wind and other
renewable energy. It also takes advantage of the V2G vehicles energy storage
to level supply and demand. And, what little fuel V2G cars need will be renewable,
such as ethanol or biodiesel in the near-term, or hydrogen for the vehicles
fuel cell in the long-term.
Sound like a pipe dream? It isnt. The technology is available right now
and can be economically viable. Experts at the National Renewable Energy Laboratory
and others are studying V2G hybrids and their benefits, and are looking at integrating
all the pieces, as well as part of a larger systems solution called the renewable
community. Wind energy is already very close to being cost-competitive with
main-grid electrical generation. Only modest subsidy increases or other policy
changes would be needed to make it fully competitive. Geothermal, waste-to-energy
and other biomass power, and hydroelectric generation can also make contributions.
Photovoltaic systems are still expensive for main-grid generation, but are nonetheless
becoming quite popular for home and business installation. If considered as
part of a homes value particularly if installed with original construction
so they can be included in the mortgage photovoltaic systems can be worth
the extra cost. And using a combination of rooftop photovoltaics and V2G vehicles,
home and business owners can do some of their own peak management and reduce
reliance on their utility for back-up.
As for the V2G plug-in hybrids themselves, future battery improvements will
make them increasingly economical, but as CalCars (see sidebar,
below) and other after-market conversions have shown, no rocket science
is needed; they are technically feasible right now. The lower operating costs,
environmental benefits and operation convenience of V2G cars make them winners
for consumers and car companies throughout the world.
The time is now and the opportunity is here to help get America off its ever-increasing
dependence on foreign oil and all its associated problems. Want domestic empowerment?
Just plug it in.
Can
I Get a Plug-In Hybrid Now? Not quite yet, but it might not be that long. CalCars, a nonprofit advocacy
group for plug-in hybrids, has demonstrated the relative simplicity of
the technology by modifying a Toyota Prius hybrid by adding ordinary lead-acid
batteries. Southern California commercial company Edrive Systems LLC is
aiming to have conversion kits using lithium-ion batteries available for
the Prius for $10,000 to $12,000 by next year. (Hondas hybrids use
a different configuration in which the gasoline engine always runs, so
it could not be so easily converted.) CalCars estimates that as original
equipment, plug-ins could be made for $2,000 to $3,000 more than a regular
hybrid. TP |
![]() |
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers ![]() |