About 50 million years ago, mammals started to breathe easier and also
to grow more easily, paleontologists say. A new study suggests that a large
increase in oxygen levels provided the physiological opportunity for mammals
to increase dramatically in size.
Small mammals coexisted with dinosaurs until the dinosaurs extinction
65 million years ago. Some scientists have suggested that the extinction opened
up ecological niches for other animals; however, that idea has not proved adequate
to explain the sudden growth of individual mammals, seen in the fossil record
15 million years later, in the Eocene.
Paul Falkowski, a research scientist in the geology and marine sciences departments
at Rutgers University in New Brunswick, N.J., and colleagues have turned to
deep-sea core samples for answers. The team says that results from their core
analysis, published in the Sept. 30 Science, depict significant increases
in oxygen levels at distinct times, which they say correlate with the rise of
large placental mammals (those that carry their young in the placenta).
Falkowski and colleagues measured carbon isotopes in 500 deep-sea core samples
that spanned more than 200 million years, which they used to determine oxygen
levels in the atmosphere for timescales of millions of years, Falkowski says.
Scientists have previously constructed similar records, but, he says, the new
measurements provide finer resolution, about every 500,000 years.
The teams measurements show a rise in oxygen from 10 percent of atmospheric
gases at the time of the dinosaurs to 17 percent 50 million years ago during
the early Eocene, and then to 23 percent 40 million years ago during the middle
Eocene. People who are familiar with paleontology would associate that
with a lot of things happening, but the big thing is the rise of placental mammals,
Falkowski says. Thats when the real big diversification of placental
mammals occurred.
Co-author Mike Novacek, a paleontologist at the American Museum of Natural History
in New York City, noticed that the timing corresponded not only to records of
mammal diversification, but also to increased size. The team says that the relationship
can be explained by mammal physiology: In similar amounts of tissue, large animals
have fewer oxygen-carrying capillaries than small animals do, so they need more
oxygen in order to function.
If you start to think about buffalos stampeding and tigers running after
deer, these animals require a very high concentration of oxygen in order to
have an active metabolic rate, Falkowski says. If you provide larger
concentrations of oxygen, then these animals can get larger and thats
exactly what we see in the Eocene.
Not all large animals need abundant oxygen; dinosaurs, for example, lived with
far less. But I would bet that those dinosaurs were not running around
very quickly, Falkowski says. And they also did not carry their young
inside a placenta like most mammals do, which requires high levels of oxygen.
In addition to increased oxygen, other factors, such as the expansion of jungle
vegetation to the poles, could have contributed to ecological diversity, says
Don Prothero, geology professor at Occidental College in Los Angeles, Calif.
Prothero also points out that mammals were large in times of reduced oxygen:
Gigantic 20-ton rhinoceroses lived 30 to 20 million years ago, as well as mammoths
and ground sloths from 2 million years ago two time periods that were
colder, drier and lower in oxygen, he says. The hypothesis may work for
the early Eocene, but does not seem to apply to any other period of mammalian
evolution, Prothero says.
Falkowskis teams next step is to determine the cause of the oxygen
trends, which the researchers say occurred during the opening phase of the so-called
Wilson cycle the 300-million- to 500-million-year periodic opening and
closing of Earths ocean basins. Falkowski says that opening oceans store
more organic matter, which oxygenates the atmosphere, while closing oceans have
the opposite effect.
Kathryn Hansen
![]() |
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers ![]() |