geotimesheader  
Geotimes Home Calendar Classifieds Subscribe Advertise
Geotimes
 Published by the American Geological Institute
February 2001
Newsmagazine of the Earth Sciences

News Notes


Tectonics
Perfecting Pangaea

Debate over the proper alignment of the continents that formed the supercontinent Pangaea has put paleontologists and structural geologists at odds with geophysicists who study paleomagnetism. Many may be unaware that the discord exists, but those in tune know that there is an alternate model for Pangaea that is not commonly printed in textbooks and is often ignored by most geologists. How can seemingly valid data sets point to such different positioning of the continents? Some scientists believe that the answer lies in a re-evaluation of Earth’s paleomagnetic record.
 
Any introductory geology textbook offers an illustration of Pangaea — Pangaea-A to be exact. This model of the arrangement of Earth’s continental landmass during the Triassic is mapped according to corresponding sedimentary layers, mountain chains and fossil beds of Africa and the Americas. The lesser-known model, Pangaea-B, follows paleomagnetic data and places South America and Africa further north along the east coast of North America than Pange- A.

[At right: Reconstruction of the supercontinent Pangaea during the Triassic (230 Mya). Ron Blakey, Northern Arizona University]
 
The paleomagnetic model of Pangaea is “not accepted by geologists, says Rob Van der Voo of the University of Michigan. Van der Voo and his colleague, Trond Torsvik of the Geological Survey of Norway, led a team that has been investigating Earth’s past polarity in search of the key that will make the two models fit into one. They presented their work on Dec. 19 at the fall meeting of the American Geophysical Union.
 
Scientists who study paleomagnetism have often assumed that Earth’s ancient magnetic field always took the form of a simple dipole magnet. Today, scientists know that about 20 percent of Earth’s present-day magnetic field is not purely dipole, based on the difference between the magnetism recorded in rock compared with its actual geographic position. The non-dipole — primarily octupole — component causes magnetic measurements across Earth’s surface to be slightly skewed from expected readings in a purely dipole field.
 
Van der Voo and Torsvik collected paleomagnetic data across Earth’s surface and reworked old models of Earth’s magnetic field, taking into account the deviations from predicted dipole paleomagetism. They found that past magnetic fields also had some non-dipole components and that the assumption that ancient Earth had a purely dipole field has caused many paleomagnetic models to be incorrect, as is the case with Pangaea.
 
If 10 to 20 percent of Earth’s magnetic field were octupolar during the Triassic, when Pangaea existed, then paleomagnetic data correspond with Pangaea-A, says Van der Voo. Not only does the new model of Earth’s paleomagnetism change scientists’ understanding of Pangaea, but it also has implications for other tectonic mysteries around the world. For example, geologists disagree about the positions of the continents India and Asia before their collision and the onset of Himalayan uplift. Siberia is considered the stable mass of the Asian continent but scientists have not been able to agree on the placement of Tarim, the block that lies to the northwest of Siberia. As India collided with and drove into Asia, it pushed up the Himalayas and moved Tarim to the north relative to Siberia. The precise timing and positioning of the event has been a point of contention between structural geologists and scientists studying paleomagnetic data for the same reasons that Pangaea has perplexed scientists. Van der Voo and Torsvik’s new paleomagnetic model could erase that discord.
 
Laura Wright
 
 


Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers

© 2024 American Geological Institute. All rights reserved. Any copying, redistribution or retransmission of any of the contents of this service without the express written consent of the American Geological Institute is expressly prohibited. For all electronic copyright requests, visit: http://www.copyright.com/ccc/do/showConfigurator?WT.mc_id=PubLink