Since the early 1960s, public
concern has increased in the United States that urbanization might be eclipsing
potential farmland. The national perspective has focused on the loss of highly
productive farmland as urban development expands into agricultural landscapes.
This trend could affect our future capacity to produce food, feed and fiber.
Indeed, under the pressure of urban growth, some farmers have relocated to less
productive soils or have abandoned the agricultural business.
The U.S. concern is also international. The world’s population is estimated
to reach 8 billion by the year 2025, a 38 percent increase from its current
population. Yet, expansion of cropland has not kept pace with growth. Eighty-eight
percent of the projected population increase is in Africa and Asia, where land
development has been increasing faster than anywhere else in the world and where
food shortages are common, according to the United Nations Food and Agriculture
Organization. Cropland acreage is also decreasing rapidly in China, Thailand,
India, Indonesia and Vietnam as a result of urbanization.
In the United States, most land-use decisions happen on state or county levels.
But the overall loss of potential agricultural land is a national issue because
it can determine the future capacity of our land for producing our food. Prompting
alarm was a 1981 assessment by the National Agricultural Lands Study, led by
what is now the U.S. Department of Agriculture’s National Resource Conservation
Service and by the White House Council on Environmental Quality. This study
estimated that the annual conversion of rural, nonfederal land to urban uses
increased from 445,000 hectares between 1958 and 1967, to 850,000 hectares between
1967 and 1975.
The National Resource Inventory is currently the main source of national data
showing the extent of prime farmland and the extent of that farmland converted
to urban uses. It is estimated that 570,000 hectares of rural land was converted
to urban uses between 1982 and 1992. The inventory tracks prime farmland, which
is a generalized and qualitative indication of soil limitations as related to
soil management and does not consider the entire range of soil, landform and
climate characteristics of the land.
The results of these studies are aerial estimates of rural land or farmland
converted to urban uses. But the adequacy of the nation’s land to produce food,
feed and fiber can only be measured in terms of potential soil productivity
of the land converted. All rural lands, even those presently used as cropland,
are not equally productive.
We need systems for measuring just how much land containing highly productive
soils is being converted to houses, shopping centers, parking lots and other
urban uses. The extent of urbanization is traditionally identified and mapped
from census data and aerial photography. However, these approaches are time-consuming,
expensive, and inappropriate for regional- and conterminous-scale analyses.
To make a more comprehensive assessment of how much urban land is eclipsing
farmland in the United States, we combined urban landcover data with soil productivity
data. Most assessments of urban growth only measure loss of space. But these
assessments tell only half the story. Our research aims to measure what kind
of land is being lost.
To plot the location and extent of urban land, we used the “city lights” maps
of the U.S. Air Force Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP/OLS). Because these satellites collect visual and infrared
images of Earth’s surface during daytime and nighttime hours, they provide maps
of urban concentrations based on light emission. The satellites follow a sun-synchronous
orbit near the poles at approximately 830 kilometers above Earth and cross any
point of the planet twice a day. The OLS, one of the six DMSP satellite sensors,
is primarily designed to monitor sunlight and moonlight reflected off clouds,
and in the process acquires images of light sources on Earth’s surface at a
spatial resolution of 2.7 kilometers. We used “city lights” imagery of stable
lights for the conterminous United States, creating a GIS (geographic information
systems) layer that showed urban landcover.
Against this we plotted soil productivity ratings, using the Soil Rating for
Plant Growth Model developed by the U.S. Department of Agriculture’s Natural
Resources Conservation Service. The model uses climate, landscape and soil parameters
contained in STATSGO (State Soil Geographic), the Department of Agriculture’s
national database on soils. We grouped the soils according to high, moderately
high, moderate or low productivity. Using ARC/INFO software, we combined the
urban land-use map with the soil productivity map to determine what kinds of
soils are experiencing urbanization.
We found that the most productive soils are concentrated in the Midwest — Illinois,
Indiana, Iowa, Minnesota, Missouri, Ohio and Wisconsin — and in two of the Northern
Plains states, Nebraska and Kansas. They also appear in delta and river valleys,
such as the Mississippi Valley and Delta; in river and coastal alluvial plains,
such as the Lower Rio Grande Plain and Western Gulf Coast Plain; and in the
Northern Piedmont and other valleys between mountains. Land with “low” soil
productivity is primarily in states located in the West Region and in the western
part of the Northern Plains, primarily Montana, Wyoming and Colorado. The most
productive soils occupy 3 percent of the U.S. landcover, and the second most
productive occupy 26 percent.
Urban land represents approximately 3 percent of the total U.S. land area, excluding
water. More than 80 percent of the total urban land use is in the Midwest, South
Central, Eastern and Southeast regions.
It appears that 83 percent of the land under urbanization consisted of
soils with moderately high or moderate productivity. Six percent of the total
U.S. urban land, approximately 1 million hectares, occupies areas that originally
housed soils of high productivity. In several states, such as Alabama, California,
Colorado and North Dakota, the urbanization occurs mostly on land that had either
moderately high or moderate soil productivity prior to development. Nebraska
is the greatest exception, where 51 percent of the urban land is on areas that
once hosted highly productive soils.
Overall, the level of urbanization of U.S. land increases with increasing soil
productivity: 1 percent, 2 percent, 4 percent and 5 percent for land in the
low, moderate, moderately high, and high soil productivity classes, respectively.
Of the total land area with “highly” productive soils under urbanization, a
little over 50 percent of that land is distributed in four states: Illinois,
Indiana, Iowa and Texas. In almost half of the states, the degree of urbanization
increases from land in the low to that in the high soil productivity category,
thus indicating that land with the most productive soils experiences high urbanization
pressure. Developers prefer land with deep, well-drained, and nearly level soils
— areas best suited for agricultural production.
Results of this study are a first step in determining the current status of
soil resources in the United States as affected by development. They should
be interpreted according to the scale and resolution of the data sources used.
Results can be different on smaller scales, such as the higher resolution soil
maps produced by states and counties. Nevertheless, our work is a basis for
developing sound management and land-use plans for state and regional agencies.
County level and site-specific assessments will need more detailed data sets.
They may also yield different results depending on the level of soil productivity
and on the development pressures in an area.
Small
cities, too |
Petersen is a Distinguished Professor of Land and Soil Resources, Department of Crop and Soil Sciences, and Co-Director of the Office for Remote Sensing of Earth Resources at Penn State.
Warner is a Research Associate for the Penn State
Office for Remote Sensing of Earth Resources.
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers |