On a cool spring
day in Ithaca, N.Y., engineer Lanny Joyce sits at his computer to keep an eye
on the system cooling the Cornell University campus 2 miles away. The system
is not a usual air conditioner. Every minute, 7,000 gallons of cold water from
the bottom of Cayuga Lake travel to the shoreline through an underwater and
underground pipe system, cooling a separate closed water loop that goes up to
campus, keeping the students and faculty cool in their final days of the semester.
A major part of construction was the deployment of more than 12,000 trench feet
of piping between Cayuga Lake and the Cornell campus. Stolt Comex Seaway engineers
stand on the Lake Source Cooling intake pipeline to verify the pipe position
as it sinks into the lake. Concrete ballast and stiffening collars lie at 15-foot
intervals on the pipe. Pusher boats on the sides moved the pipe around into
position.
Joyces eyes beam through his oval-shaped glasses at the screen as he boasts
of the energy-saving benefits of the two-year-old Lake Source Cooling (LSC)
system over the old refrigeration system developed in the 1960s. Since LSC began
in July of 2000, Cornell has been using 85 to 90 percent less electricity to
cool the campus.
This is it, the thing I always I love to look at: 0.084 kilowatts per
ton of air conditioning. When we were running refrigeration, the total system
efficiency averaged near 0.7 and on a hot day approached 1.0 kilowatts per ton,
Joyce says. I get to look at this 85 percent reduction every day.
Cayuga Lake sits in a glacially carved valley in central New York. At 38 miles
long and 435 feet deep, it is the second largest of the six New York Finger
Lakes. It is the backdrop and main player in a $57-million cooling project for
Cornell.
During the summer, the lakes surface heats up, but at 250 feet deep, the
waters maintain a year-round temperature of about 39 degrees Fahrenheit. In
1994, Joyce and other Cornell staff first envisioned using Cayugas cool
waters as a less expensive, non-CFC, renewable energy source for cooling Cornells
campus as an alternative to the refrigeration based chilled-water system. The
old system used three chilled water plants and a 4.4 million-gallon thermal
storage tank to air condition Cornell with CFC refrigerants.
The Ithaca community met their idea with caution and some resistance, fearful
that the project might alter the beauty and ecology of the Finger Lake. After
extensive environmental assessments, the University and New York Department
of Environmental Conservation approved the project in January of 1998. Since
the controversial projects operation began two years ago, LSC has come
full circle now winning praise from engineers and environmentalists alike.
This year, among its many accolades, the Cornell Utilities Department won the
2001 New York Governors Award for Pollution Prevention. LSC eliminates
the need for about 20 million-kilowatt hours of electricity a year enough
power to serve 2,500 homes a year. Joyce says he believes the beauty of LSC
lies in its simplicity.
How it works
LSC consists
of two loops, one carrying water between the lake and the LSC plant on shore
and one closed loop between the plant and campus. The Cornell water and lake
water never mix. Once on campus, the chilled water winds around a closed loop
of pipes and collects the heat removed by air conditioning in the buildings.
The heat exchange facility serves
as home base for the Cornell University Lake Source Cooling Project. The
project has replaced refrigeration to air condition the college campus two miles
away. Photo by Lisa M. Pinsker
The onshore LSC plant pumps the 39-degree Fahrenheit lake water to a heat exchanger,
where it absorbs some of the heat from the closed loop from Cornell, before
the water returns to the lake. The 55-degree Fahrenheit water enters the lake
at a shallow depth. The last 100 feet of the outfall has diffusers on
it 38 nozzles that are small in diameter that direct the water and also
induce lake water to mix with it, so it quickly returns to the ambient condition,
Joyce says. It turns out, Joyce adds, that the water coming out of the LSC plant
is actually colder, clearer and lower in nutrients than what is already in the
lake during the summer months when flow is highest. And the actual amount of
heat added back into the lake is equivalent to two additional hours of sunlight
each year.
The open lake loop starts at an intake pipe 250 feet below the lake surface,
10 feet above the lake bottom in water 2 miles from the plant. The intake designers,
Makai Ocean Engineering, planned deployment of the piping from the surface using
a controlled sink process that pumped water in at the shallow end and released
air at the other.
At the beginning of design, Makai required piston coring to survey Cayugas
sediment composition. Joyce says that it was essential to insure that the piping
infrastructure would not sink into the sediments, otherwise it would have been
impossible to retrieve the intake pipe. In addition to conducting formal geotechnical
tests, Makai engineers placed a cinder block on the lake bottom to see how much
it would sink into the sediments. Also, they dropped the block from 15 feet
above the lake bottom and measured the difference in settling. An underwater,
remotely operated vehicle photographed the block. Both tests revealed very minimal
sinking. Later retrieval operations confirmed that the lake bottom was supporting
the piping. Since the pipe deployment in fall of 1999, theyve filmed the
piping underwater three times. The pipe is sitting in exactly the same
position as original deployment, Joyce says.
The intake features some biological adaptations. An octagon-shaped fine screen
about the size of a house covers the pipe to keep fish out. The screen can come
up the surface for mechanical cleaning should zebra mussels accumulate in the
pipe. Also, a low-wattage light acts to deter mysids, tiny freshwater shrimp.
Getting to know the lake
Over the six years of planning and 18 months of construction, engineers had
to work with biologists, geologists and limnologists to create an effective
design that would not disturb the natural environment. From the beginning
the issues on the table were technical feasibility, costs, potential environmental
impacts, and public acceptance, says Liz Moran, owner of EcoLogic and
principal scientist for the Lake Source Cooling project when at Stearns and
Wheler,LLC. Every aspect of the lake came under close scrutiny, from temperature
and nutrients to sediments and biology.
Determining the best depth for an intake pipe, for example, involved temperature
profiling of the lake. Originally, the LSC team planned to put the intake at
200 feet, Joyce says, but the temperature wiggled too much. The
intake had to be at a depth of consistently cool water. Wind blows down the
lake, creating waves that slosh around like water in a bathtub. The water curls
around the lake and heads up the other shore, stacking the warm water downwind,
close to Ithaca, and creating rapid temperature fluctuations at depth.
Learning the hydrodynamics of the lake was fascinating, Moran says.
Although they had 10 years of weather data from local weather groups to study
heat input to the lake, before the temperature profile, they had no previous
comprehensive data of the lakes temperature structure at depth. Moran
is now working on a larger project to study the lakes entire watershed.
She says the LSC data has proved invaluable to future lake studies.
The temperature structure for Cayuga Lake was just one of many new data sets
that LSC motivated. To develop LSCs Environmental Impact Statement, Moran
worked closely with a committee of four Cornell scientists: a biogeochemist,
a civil and environmental engineer, a fish ecologist and a limnologist, Nelson
Hairston. Among the environmental impacts they looked at were the change in
the lakes phosphorus cycling.
Many scientists and people in the community were concerned that bringing phosphorus-rich
bottom water to the surface would create massive algal blooms. phosphorus in
Cayuga Lake comes from two sources: river runoff and wastewater treatment plants.
To study this potential problem, Hairston, Moran and colleagues had to study
the way water moves in the lake. It turns out that the entering phosphorus
concentrations fall off quickly. Hairston says the increased phosphorus load
to the surface waters from LSC is undetectable. However, to facilitate the mixing
of the incoming LSC water with the ambient lake water, the engineers, on the
advice of environmental investigators, decided to install the diffusers on the
outfall pipe.
The Upstate Freshwater Institute monitors water conditions biweekly. Over the
past two years, they have observed no unusual algal blooms on Cayuga Lakes
surface. The constant communication between the environmental and engineering
teams was absolutely essential for the projects ultimate success,
Moran says.
A milestone
In addition
to the Governors Award, the LSC project and team have received honors
from the American Society of Civil Engineers, New York State Society of Professional
Engineers, the International District Energy Association and the American Society
of Heating Refrigerating and Air-Conditioning Engineers. Many longtime critics
of the project, however, are still not swayed by these recent honors, according
to a recent article in the Ithaca Journal. Despite the communitys
sometimes lukewarm acceptance, community input and participation has resulted
in a new park on the lakeshore across from the LSC plant, nearly 3,000 feet
of new road and utility infrastructure in Ithaca, and a continuous walking path
from campus down to the lake shore. The system also cools the local Ithaca High
School.
From theLake Source Cooling heat exchange
facility, engineer Lanny Joyce looks out on Cayuga Lake with pride. Photo
by Lisa M. Pinsker
The projects innovations have also opened the door for similar cooling
systems. While lake- or river-source cooling has been in use since the Industrial
Revolution, LSC is the first to eliminate the need for refrigeration chiller
plants year-round. A couple of chillers in one plant remain on Cornells
campus as part of a back-up system or emergency source of cooling in the summers
hottest months, and for future peak hours as load grows on campus.
Stockholm has a similar cooling system. But that project is smaller in scope
and size than LSC, says Peter Veldhuizen, a principal engineer at Gryphon International
Engineering Services, the firm of record for LSC. He and colleagues
are currently developing a system for Toronto that will use Lake Ontario for
a district cooling system. They are using many of the designs from LSC. Veldhuizen
says Cornell and Ithaca were fortunate to have such a large candidate lake so
close-by.
Moran and Joyce walk around the LSC facilities with pride. The cool breeze coming
through the plants grating floor from the lake water below reminds them
of their success. Says Moran, It was a rare gift to be asked to contribute
ideas and expertise to such an open collaborative process that culminated in
a great project with measurable environmental benefits.
Visit Cornell's Lake Source Cooling Project Web site.
![]() |
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers ![]() |