Untitled Document

Planet-Finder's Guide to the Universe
Naomi Lubick

Bringing back life from space

Hundreds of light years away, scattered across the galaxy and presumably throughout the universe, huge planets made of gas swing in their orbits around stars the size of the sun. But not until the early 1990s did researchers begin to collect direct evidence that these planets exist outside Earth’s local solar system.

Today, researchers have captured actual images of planet-sized bodies orbiting stars hundreds of light years away. These “photographs” are another milestone in what has been a long trek toward finding so-called extrasolar planets. Because of the state of current technology, scientists can only see planets that are huge in comparison to the quarry that they are seeking: small rocky Earth-like planets.

Finding a small watery planet light years away may seem impossible, but finding life on one is the ultimate and even more extraordinary proposition. So astronomers and planetary geologists have adopted a buckshot approach to find potential Earths, scanning the skies for stars that show evidence of planets in their vicinity. So far, their catalog includes more than 145 extrasolar planets. And as planetary scientists and biologists pursue research on extreme life on Earth, scientists are also making plans to send telescopes into space to find planets — and maybe life — elsewhere in the universe.

From the ground up

Whether the drive behind searches for other planetary systems is to determine how our own system developed, or to find out whether or not we are alone in the universe, the search for planets outside Earth’s solar system proceeds at a breakneck pace. After Swiss astronomers Michel Mayor and Didier Queloz found the first planet around a sun-like star in 1995, the hunt began in earnest. A team led by Geoff Marcy of the University of California at Berkeley and Paul Butler of the Carnegie Institution of Washington followed up, finding a wealth of planets hosted by faraway stars.

Earth-based telescopes such as the Very Large Array in Socorro, N.M., have been important in the search for signs of extrasolar planets. The 27 antennas can be arranged in various configurations, and the combination of their data streams allows them to act as one giant telescope. Image courtesy of NRAO/AUI.

“The paradigm we have for forming solar systems is that you have a cloud of gas” from which planets will form, says Karl Stapelfeldt of NASA’s Jet Propulsion Lab in Pasadena, Calif. The cloud initially condenses “like snowflake particles get together in clouds on Earth,” before becoming like snowballs, he says, “in a shooting gallery of ever-more-violent collisions.” Stars at various ages have provided different examples of how it works: Disks of gas and dust that coalesce around stars can give rise to large gas planets like the ones we have in the outer limits of our solar system. They may also form smaller rocky planets — Earth, Venus and Mars in our local system — closer to a star and in a zone that we, at least, consider perfectly habitable.

The current catalog of extrasolar planets shows that large gas planets seem to form reasonably often, says Jonathan Lunine of the Lunar and Planetary Lab at the University of Arizona, Tucson, and they do not necessarily fill “the space where terrestrial planets should be.” From everything seen so far, Lunine says, “there are probably lots of Earths out there waiting to be discovered.” Yet for now, the only way to get to those Earths is to find larger planets while working to improve the technology to see smaller ones.

Teams including Marcy, Butler and their co-workers determined that they could deduce the presence of large planets by searching for stars that seem to “wobble.” The teams have used mostly ground-based telescope arrays to scour stars for the telltale tremble that indicates a large mass is pushing and pulling at a star while orbiting around it. That means that most planets observed so far have been on the order of a Jupiter — more than 300 times the mass of Earth and bigger — but sometimes smaller, and often much closer to their stars than Earth is to the sun.

One of the planets “photographed” in the last year was first detected by the Very Large Telescope in northern Chile, in April 2004; a year later, scientists confirmed from the Hubble Space Telescope that the sighting was an actual recording of a planet’s light. At five times the size of Jupiter, the planet appears as a red dot next to its faint brown dwarf star, which it orbits at a distance that is 55 times farther than that between Earth and the sun.

But of late, several newly found extrasolar planets, scientists calculate, are the size of Neptune (about 17 times the mass of Earth, but much smaller than the large planets found in the late 1990s). And last month, Marcy, Butler and their team announced that they had found evidence for the smallest planet yet, about six times the size of Earth, using the Keck Telescope. New Earth-based instruments, including a new spectrometer on the Very Large Telescope, are “the real winners” for indirect detection techniques on the ground, says Jill Tarter, the director of the Center for SETI Research in Mountain View, Calif., which conducts surveys for technology signals from other planets as evidence of life.

Ground-based observatories can go after young low-mass stars. And if they have young planets, “the planets are still contracting, and still giving off light,” Tarter says. Other options include looking at M stars, known as red dwarfs, which are half the size of the sun and much less luminous. “The precision is getting so good that we’re getting down to Neptune-mass planets,” Tarter says, “but we won’t get to Earths that way.”

To find the smaller planets, scientists will have to get off Earth. From the ground, says Sara Seager, an astronomer at the Carnegie Institution of Washington, telescopes have to look through Earth’s atmosphere, which varies and also could obscure similar signals from Earth-like planets. Seager also notes that “stars are up to 10 orders of magnitude brighter than a planet,” she says, “swamping” any planet’s light from the ground-view, and even from the space-view of the Hubble Space Telescope.

The only way to get detailed information of and from planets elsewhere — the “holy grail” of photons recorded directly from a planet — is to send observatories far past Earth’s atmosphere, Seager and others say. A series of missions have launch dates spanning the next two decades, all culminating in a mission that many scientists hope will work best: the Terrestrial Planet Finder.

Off the ground

The Terrestrial Planet Finder is exactly what its name says: Its mission is to find Earth-like planets, potentially with water and at around the same distance from a star as Earth is from the sun — the so-called habitable zone that researchers hypothesized in the 1960s. In its simplest incarnation, that zone means that too close to a star, a planet bakes off its water, but too far away, it will freeze. Neither condition is “just right” (like Goldilocks’ porridge) to accommodate life, which many scientists say needs liquid water.

The Terrestrial Planet Finder program plans to launch two observatories within the next decade: the visible-light coronagraph in 2014 and an infrared interferometer, shown here, around 2020. Image courtesy of NASA/JPL.

To find small rocky planets in just the right spot, the Terrestrial Planet Finder program aims to launch two observatories in 2014 and 2019, says James Kasting of the University of Pennsylvania in University Park, to study 30 to 50 stars in detail. Each will use a different imaging method.

The first to go will be TPF-C, which will carry a space-based telescope built to record visible light from planets while blocking out the light from their host stars (using a coronagraph, blocking out everything but the star’s corona, hence the “C”). The second instrument, TPF-I, will look in the thermal infrared wavelengths, using an interferometer (hence the “I”) — as series of devices that act as one instrument.

“Planets are cool objects compared to stars,” which give off both visible and near infrared wavelengths, Kasting says, “whereas planets give off in the thermal infrared.” (Another thermal infrared-detecting mission, known as DARWIN, should launch in 2015, by the European Space Agency.)

The 15 to 20 years it may take to get the interferometry mission “off the ground” is in part due to funding issues, but also because of the time it will take to develop the technology, says Lunine of the Lunar and Planetary Lab. Plus, NASA’s new administrator, Michael Griffin, recently presented a new budget to Congress that would require pushing back the launch of both the Terrestrial Planet Finder and another planned mission, SIM PlanetQuest, intended to search for planets until the Terrestrial Planet Finder gets space-borne.

SIM PlanetQuest, first called the Space Interferometry Mission and scheduled to launch in 2011, will catalog some stars that the Terrestrial Planet Finder will study. Seager says that like earlier methods, SIM basically will look at the motions of stars, again searching for gravitational wobbles. Another space-based telescope called Kepler (scheduled for 2008) will search for transits, a temporary blocking of light as a planet passes between its star and Earth, or behind the star so that its own light is blocked.

Astronomers recently observed another previously identified planet, in results published in the June Astrophysical Journal, measuring how much the star’s light seemed to diminish as the planet passed behind it (see image, page 30). But identifying a transit means being in the right place at the right time.

“Things have got to be exactly lined up,” says Stapelfeldt of the Jet Propulsion Lab. In our own solar system, for example, a century may pass between a transit of Venus because Earth and Venus have offset orbits. “That just emphasizes how fortunate these events are, and how you can’t count on them” for planet-finding, he says.

By directly surveying tens of thousands of stars to search for several hundred planets, Kepler may have a better chance of finding small planets, says William Borucki, the mission’s principal investigator from NASA Ames Research Center in Moffet Field, Calif. “If Earths are common,” he says, “then it may well be that there is life throughout our galaxy. On the other hand, if Kepler finds none, then Earths are extremely rare,” and, hence, life may be too.

Pale blue dot

Finding those small, rocky and watery planets orbiting their large stars presents scientists with the “pale blue dot problem,” says Steven Benner, a chemist at the University of Florida in Gainesville. “Pale” because that sought-after planet is small and faint in comparison to its sun, and “dot”-like because it’s supposed to be small and rocky, like Earth. The “blue” requirement comes from the assumption that water is necessary for life.

Benner is a member of a committee convened more than a year ago by the National Academy of Sciences to challenge just those assumptions, by considering “weird life.” Photosynthesis or water may not be necessary, Benner says. “Organic chemistry could support life in an atmosphere like Titan,” a moon of Saturn (see story, page 22 of this issue), he says, and scientists might have to consider life on planets configured very differently than Earth.

To detect any kind of life at distances of 15 to 20 light years away, scientists will “need more information than just a barely resolved light such as a pale blue dot,” Benner says. That information includes biosignatures — the types of evidence that could come only from life. Earth’s atmosphere, for example, contains significant amounts of oxygen and methane, which are otherwise incompatible, and can only be maintained by life forms that consume and exude both. Therefore, on another planet, finding the spectra of two gases coexisting that are not normally stable together could be an indication of life.

Tracking such evidence will require directly gathering the spectra of a planet’s atmospheric gases — starlight reflected from a planet’s surface varies in strength at different wavelengths according to its composition — or other such indicators. And collecting the profiles will require long observation periods of candidate planets. Depending on their environments, planets most likely will present different spectra. For example, early Earth before the rise of oxygen in its atmosphere would have had a very different profile from afar than it does now, even if it did have life. That’s because methane-based life, for example, would have a different signature than photosynthesizing life forms.

To test these ideas, researchers in Victoria Meadows’ lab at the Jet Propulsion Lab have been building virtual planets with various atmospheric, orbital and other configurations. So far, Meadows’ team has been able to model a Mars-like planet’s annual cycles of soil and atmospheric temperatures, and have worked out methane and ozone signals for hypothetical Earth-like planets according to the radiation they receive from different-sized stars. Such complex interactions might mislead researchers into thinking they have found life, so the research group also pursues what kinds of planetary configurations might give “false positives.”

For now, the search for life continues to be based on what scientists know from Earth, the only example we have, says Borucki of NASA. “You always work from the familiar and the understood to the new,” he says. “If you jump too far, you don’t know where you are.” That means starting with trying to find planets that have water on their surface, and understanding life that is carbon-based.

But if researchers throw out the requirements for life as we know it on Earth, then that opens up other options for finding life, Benner says, such as on larger planets at distances outside what we think of as the habitable zone. “There’s the possibility of life in solvents that are not water,” he says, “possible even in gas giants like Jupiter.”

That possibility throws into question researchers’ ability to recognize life if it’s in an unfamiliar form, even in more local searches. Benner cites the controversy that sprung up around the Allan Hills meteorite, a martian rock found in the Antarctic and identified as bearing possible microbial fossils. The putative fossils were deemed “too complex to be made by nonliving processes,” Benner says, but they seemed too small.

“What makes you think cells have to be large? On Earth, proteins and nucleic acids are necessary for life” — hence the large cell size argument — “but there’s a perfectly good model that says cells need only nucleic acids,” Benner says. “You can immediately see the kinds of arguments you get into even having the sample in hand.”

“We’re trying to understand life as we know it in the extreme,” says Tarter of SETI, from the various metabolic pathways an organism might use to eat and breathe to the detritus it could leave behind. Built on extreme life studies here on Earth in places where bacteria might thrive on methane or microbes feed on iron sulfide, without need for sunlight or oxygen, the scientific community is focusing on the martian subsurface for a microbial search.

The recent explorations by the Mars twin rovers “leave no doubt that Mars could have supported life,” Benner says, as the planet had water at the same time Earth did long ago. The question is not only whether life was there, but whether scientists can recognize its traces.

Bringing back life from space

Scientists have long imagined sending a lander to Mars that is fully equipped to examine the red planet’s soil for microbes, dead or alive. The ultimate purpose of such a roving laboratory would be to package up a piece of Mars and send it back to Earth on an extraordinary sample-return mission.

Such a mission, whether to Mars, or to Jupiter’s icy moon Europa, or beyond in the search for life elsewhere, has captivated scientists — at the same time that it could be a worrisome undertaking. As NASA’s planetary protection officer, microbiologist John Rummel’s job is to ask the questions as to whether any project could either “forward contaminate” a target or “backward contaminate” Earth. But because his position was established in 1998, such issues have not been much of a problem, as no mission has yet brought back life from space.

The first planned sample return from a mission meeting a small body — Stardust, scheduled to return in January 2006 with samples from a comet — is highly unlikely to meet up with microbes, according to Rummel. For planetary exploration, the Mars mobile laboratory may be the next best chance for finding life, if it does exist. Mars remains one of the most promising of Earth’s nearest neighbors, as it is easy to get to and has a history of water and warmth that matches Earth’s own early history.

The last mobile life-searching laboratory on Mars, the Viking lander that reached Meridian Altiplana in 1976, had three life-detection tools aboard to look for evidence in sample soils of metabolic activity. After radioactive carbon-14 was sprinkled as “food” eventually to be exhaled by any life present, says Steven Brenner of the University of Florida, the possible interpretations were not conclusive that life was present, even though some signs were positive.

Now, the timescale for bringing back samples from Mars — with potential life forms — “is in the cards for the near future,” says Jill Tarter, an astrophysicist and head of the Center for SETI Research. Researchers at the Jet Propulsion Lab in Pasadena, Calif., have been working on the Mars sample return technology “for some years now,” Rummel says. “They’re seriously investing in it and they’d like to do it as soon as they can.” Once they smooth out various kinks, he says, “then we can get serious about Mars sample return.”

Rummel says he was “very pleased” to see the Mars exploration in NASA’s recently published roadmap “underscored with anti-contamination language.” But he predicts another decade will pass before such a mission gets off the ground, and he has to vet it in his position as NASA’s planetary protection officer. As a reminder of how difficult it will be to get such a mission on its way, Rummel says, he possesses a Mars sample return proposal “that I pull out now and again,” written in 1979 during the Apollo mission.


Back to top

Lubick is a staff writer for Geotimes.

"Journey to a Titanic World," Geotimes, July 2005
Jet Propulsion Lab's Planet Quest Web site
Center for SETI Research

Back to top

Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers

© 2018 American Geological Institute. All rights reserved. Any copying, redistribution or retransmission of any of the contents of this service without the express written consent of the American Geological Institute is expressly prohibited. For all electronic copyright requests, visit: