Geologic samples are the primary database for a wide variety of applied and
academic research. Ranging from drill cuttings derived from subsurface exploration
to fossils in museum collections, these samples are a unique and irreplaceable
source of geologic information for vast areas of the United States and other
countries. Despite their importance and the great expense of acquiring them,
many collections are becoming stagnant or are improperly maintained. Moreover,
a huge amount of geologic samples and related data, much of it paid for with
public funds, is discarded routinely after fulfilling only a small portion of
its potential use. We face a crisis in maintaining our collections.
Concern over the preservation of geologic samples in recent years prompted several
groups and individuals to investigate the problem. For example, in 1992, E-an
Zen, then president of the Geological Society of America, requested that the
National Research Council consider geological collection issues. In 1996, Paleontological
Society President Jack Sepkoski established a Collections Committee to advise
the Society on issues such as the planned dispersal of the U.S. Geological Surveys
paleontological research collections. Later, concern over the disposal of oil
company samples prompted the National Research Council to establish a panel
to discuss collection issues (see also the first
feature story).
Is this crisis a new, fiscally driven problem resulting from decreasing support
for science in general? Does it signify a change in direction for scientific
interests within universities, government agencies and industry? Or have these
and other factors combined to make an old problem even worse?
In this brief discussion, we are able to address only a few of the many aspects
of geological collections issues. We especially want to demonstrate how very
few of the geological data and samples generated each year are preserved or
studied by scientists before being discarded while, at the same time, samples
already in many of our public repositories and museums face an uncertain future.
Geologic samples through time
For hundreds of years, geological specimens were collected as mere natural
history curiosities. Beginning in the 1700s, however, the study of fossils,
rocks and minerals helped to establish geology and paleontology as true scientific
disciplines. The first museums of the time served to display and store these
objects. Then, as now, some of the most popular museum attractions were the
fossils of large extinct vertebrates. By the early 1900s, numerous museums throughout
Europe and North America, including those run by most major universities and
many natural history or geological societies, had geological collections.
Since their peak in the early 20th century, the number of institutions maintaining
these geological collections has declined significantly as some of the organizations
have disbanded and others have disposed of their collections and exhibits. Although
the scientific, educational, and cultural value of these specimens was not questioned,
the expense of maintaining a museum and its collections was thought to be too
great for many of the smaller institutions.
In the late 19th and early 20th centuries, new applications of geology, accompanied
by technological advances, produced a variety of new geologic samples, each
type having its own value and preservation requirements. Unlike for fossils
and minerals, however, no sustained effort to preserve many of these samples,
despite their value for both academic and applied research, exists. Initially,
most of these new samples were cuttings from water-well drilling that made it
easier for geologists to visualize the subsurface in three dimensions. Availability
of these subsurface samples helped advance geologic studies, especially the
mapping of relatively flat areas sparse in outcrops. At first, few people were
interested in saving cuttings, and cuttings have never been a significant part
of traditional museum collections. The establishment of many permanent
state geological surveys around 1900 resulted in the earliest efforts to establish
repositories (usually poorly maintained storage in closets or basements) for
subsurface samples.
Additional subsurface samples were available from mining exploration; but, because
they were usually generated by private industry, they seldom ended up in public
collections. And most originated from rural areas, making them less useful for
urban planning today.
Rapid expansion of the petroleum industry, which depended heavily on subsurface
geologic studies, generated a new source of subsurface samples, including cuttings
and cores. Many of the oil companies became some of the largest holders of subsurface
samples.
Since World War II, geologic work has generated an avalanche of new samples,
as well as a new range of technology-based data sets. Besides increased well
drilling for water and hydrocarbons, new government-funded research programs,
coupled with rapid growth in engineering and environmental geology, have produced
an abundance of new subsurface samples. Downhole geophysical logging, seismic
surveys and a range of other investigative technologies are now commonplace
research tools.
The preservation of these new samples and data, however, has been erratic. Unfortunately,
at a time when increasingly better samples and data are being generated from
new areas, funding for many of the public institutions that maintain geological
samples, including museums, has decreased. As a result, vast amounts of new
geologic samples and data are being lost annually, and the long-term existence
of many older collections is in doubt.
Museums in funding dilemmas
While many, if not all, aspects of sample and data preservation are important,
we can focus here on only some of the major problems. A significant problem
is the decline or stagnation of many existing data repositories and museums.
Traditional museum collections are unquestionably of great importance as research
and educational tools and, in many cases, for their significant cultural or
historical value. But even this 200-year-old tradition has changed. Many museums
now invest considerable resources into developing new, crowd-pleasing exhibits
that generate significant revenues through paid admissions. Part of this effort
includes expenditures for new exhibit specimens, including Sue, the showpiece
Tyrannosaurus rex skeleton the Field Museum of Chicago purchased for $8 million.
Remodeling of exhibit halls in large museums frequently costs millions of dollars.
In contrast, research collections typically receive little support for curation
or acquisition. An informal survey we have conducted over the last 30 years
shows that most museums, including many of the largest and best funded, have
a considerable backlog of specimens that have never been cataloged properly.
In addition, a high percentage of the cataloged material has erroneous or incomplete
documentation. This situation has not improved over the decades and, in some
cases, has worsened. As long as specimens remain uncataloged, critical information
can be lost, in turn degrading the value of specimens in most collections. Even
if documentation for these specimens is not useful for all types of paleontological
studies, it is usually sufficient for systematics, paleogeography, biostratigraphy,
functional morphology and numerous other studies.
Moreover, these specimens may provide historical documentation for older research.
Some museums use catalog computerization programs or have reorganized. While
useful, these efforts seldom provide real improvements in how well the specimens
are actually curated, and the backlog of uncataloged material remains.
In times of limited funding, this neglect could perhaps be justified as economically
sound if the older collections contained specimens that lack scientific importance
and that could be collected again easily with better documentation. This scenario
is rarely the case. Rather, many of these older specimens are irreplaceable
documentation for the paleontology of large parts of the country where outcrops
and quarries have long been lost to urban expansion. Even if some localities
were still accessible and collecting from them possible, it would be extremely
expensive and time consuming to duplicate much of this material.
Also stagnating in recent years is the growth of collections. Many museums have
space limitations for new collections and, as a result, few institutions are
willing to accept large, new collections. Collection growth in many institutions
may now be at an historical low.
Losing sight of the subsurface
Repositories for subsurface and other geological samples face some of the same
problems as traditional museums. Many have space limitations restricting the
amount of material they can acquire. This problem was magnified recently with
the dispersal of large petroleum industry collections. Some collections have
been offered to public institutions, but the collections large size typically
requires significant financial support for transporting the samples or for constructing
new storage facilities.
More dramatically, recent decades have seen an increase in the number of innovative
geologic studies and technologies. Yet, many of these new types of data are
not being preserved. Many are discarded.
In many states, the footage of samples produced for these studies greatly exceeds
that generated for all other types of geologic investigation and research. Much
of this material is generated in urban areas, historically requiring little
study but now, with urban growth, requiring abundant geologic information.
The quality of these new samples cores, high-tech downhole logging and
laboratory test results is often superior to older samples in many ways.
Many of these projects represent substantial geologic and geographic coverage
and an enormous financial expenditure. For example, over the last several decades,
both Chicago and Milwaukee have constructed deep-tunnel sewer systems. Planning
for these systems required drilling hundreds of deep cores, as well as conducting
seismic surveys, geophysical logging, groundwater tests and a wide range of
engineering studies. The cost of drilling the cores for the Chicago project
alone would today exceed $6 million. The total cost of the construction of these
systems was several billion dollars.
Most of the cores from these projects have been saved, but only temporarily,
as their enormous volume has been difficult to accommodate in existing repositories.
It is likely that this material represents a one-time opportunity to obtain
comprehensive subsurface information for these two metropolitan areas. Therefore,
the importance of saving as much material as possible is obvious.
Although these large-scale projects are impressive in the amount of samples
and information they produced, many small-scale projects that dont attract
as much attention collectively produce enormous amounts of samples and data.
For example, hundreds, if not thousands, of soil borings are produced each year
for environmental and engineering studies in an urban area such as Chicago.
Such studies are conducted for constructing roads, buildings, landfill sites,
bridges and water-intake tunnels, as well as determining water and soil contamination.
The amount of this drilling is difficult to determine; however, estimates from
a single Illinois drilling company show that rock coring per drill rig averages
10,000 feet per year, with more than 80 rigs in the state. Importantly, public
money funds much of this drilling. Most of these projects are undertaken by
government agencies or as a result of government regulations. In the short term,
disposal of samples may appear to be economical; in the long term it represents
a loss to the public of an investment already made.
Although there have long been efforts to acquire samples related to the mining
and oil industries, other important private sources have received little attention.
For example, nearly every county in the United States has a quarry or gravel
pit for producing aggregates. Samples generated by exploration or reserve studies
at these sites are seldom preserved, even though many companies are willing
to share their information.
Solutions
Two distinct issues underlie preservation of geological samples: the continued
maintenance of existing collections in museums and other repositories and the
preservation of new samples generated for urban planning and other projects.
The latter samples commonly are discarded before they can be used for any scholarly
research, often before the geologic community even knows the samples exist.
Considering the multitude of problems related to the preservation of these diverse
geological samples and associated data, no single solution will fulfill all
needs; however, we offer a few suggestions.
Most importantly, members of the geologic community need to work together to
establish guidelines determining what samples need to be saved and how best
to save them. The community needs to insure that at least minimal funding for
publicly supported geological studies is directed toward transporting geological
samples to designated repositories and providing their long-term storage. If
the large volume of samples exceeds the capacity of existing storage facilities,
then the cost of building new storage space could be added to the budget of
large-scale projects. Copies of all geotechnical reports and data generated
by publicly funded projects should also be placed in designated repositories.
In addition, we need to develop polices to insure that materials already in
repositories or museums are properly maintained not only for current uses but
also for future research.
![]() |
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers ![]() |