Life is risky. In response, some people live cautious lives, prepared for most
eventualities. I am like Alan Greenspan: careful, methodical and prepared for
the worst. I have an umbrella insurance policy and even pay $70 monthly for
a dental plan that as best I can tell only covers things you dont have
done. Maybe the Pete Rose approach is better: Throw caution to the wind, do
what you want to do (despite the rules) and hope you dont get caught.
In preparing for geological hazards and natural disasters, does society have
the same two options? For example, last Decembers earthquake near Bam,
Iran, claimed at least 30,000 lives. Caution might have led to more care in
choosing what was built where and how. Certainly the dinosaurs should have chosen
the Greenspan approach and taken the collision option on their rent-a-planet
contract.
A look at death rates might help decide whether the Alan Greenspan or Pete Rose
approach works best in assessing geological risk. In the last decade of the
1990s, about 2.5 million Americans died annually. Disaster-related yearly death
rates in the United States include the following: floods, 176 victims; lightning,
147 victims; landslides, 59 victims; earthquakes, 29 victims; tsunami, 3 victims;
and volcanoes, 1 victim for a total of 415 (Rogers and Feiss, People
And the Earth, 1998). While frightening, the numbers are trivial when compared
with the number of victims of motor vehicle accidents (about 48,000), suicide
(roughly 36,000) and murder (more than 29,000 yearly).
Thus, over the short term, geological hazards are minor killers. Significantly
more money should be spent setting and enforcing reasonable rules on weapons
possession, drivers education, psychotherapy, marriage counseling and
maybe even yoga, rather than earthquake site selection and tsunami barriers.
Folks in Seattle and Portland dont need oxygen tanks and face masks to
protect them from a rare episode of Cascade volcanism. Lightning kills, but
even the Federal Emergency Management Agency (FEMA) would not mandate portable,
individual lightning rods.
This view is underscored when disasters are quantified on the basis of dollar
cost rather than deaths. Some of the more costly natural catastrophes of the
1990s (data from the 2004 The World Almanac and Book of Facts as well
as Rogers and Feiss) include the earthquake in Kobe, Japan, in 1995 ($140 billion),
Hurricane Andrew in 1992 ($30 billion) and floods in the U.S. Midwest in 1993
($15 billion).
While these costs may seem expensive, in 2002 alone, U.S. citizens spent $81
billion on tobacco products and $49 billion on footwear. Military operations
in Iraq and Afghanistan are projected at almost $130 billion for 2003 and 2004,
with another $40 billion slated for rebuilding. On a per capita basis, the great
Midwestern floods cost each of us $60; Hurricane Andrew about twice that; and
the 1989 Loma Prieta, Calif., earthquake roughly $40 for damages and repairs.
Again, the costs are not trivial, but compare it to the $5,805 each American
spent for medical costs and health insurance in 2003.
Unfortunately, rare but especially devastating notable natural catastrophes
complicate simple cost and effect analysis. The 1902 volcanic eruption of Mount
Pelée, Martinique, killed 28,000 people; the 1976 earthquake near Tangshan,
China, killed 255,000; and the 1931 floods of the Huang He River in China claimed
almost 4 million victims. Do we plan for or around such disasters in heavily
populated areas?
Assessing and managing geological risks are difficult, but unlike calculating
historical and political risks. Geologists can examine the historical record
of natural hazards and assign a crude predictability to frequency, location
and intensity. In that way, researchers can help society better plan for these
events in a clear methodical way.
Seth Stein and Joseph Tomasello clearly demonstrate how geologists are best
equipped to prepare society to mitigate natural risks. In an Ed/Op article in
the Jan. 1 New York Times, they argue against the blanket application
of stringent earthquake-resistant standards, like those of California, for site-selection
and building construction. FEMA has been recommending precisely that option
nationwide.
Stein and Tomasello point out that the California codes represent overkill
if applied to the New Madrid fault zone that extends from Missouri south and
west into Tennessee. They believe that insufficient attention has been paid
to adequately weighing costs versus benefits. For example, they guesstimate
that applying California code to Memphis buildings would increase construction
costs by 5 to 10 percent, even though a building in Memphis loses only about
1 percent of its value over its 50-year life because of earthquakes.
The authors also emphasize the tradeoff: Money spent retrofitting older schools
and hospitals or constructing new, quake-proof structures is obviously
thus unavailable for teachers salaries, flu shots and defibrillators.
They favor objective assessment done by outside analysts who carefully weigh
the delicate balance between safety, health and risk keeping in mind
geological factors.
In other words, take a mixed approach: Take the time and make sure that the
appropriate people get things right, and keep in mind that even sensible solutions
require a touch of Pete Roses willingness to tolerate acceptable risk.
![]() |
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers ![]() |