Untitled Document

Geologic Column
Hit the Ground Running: Freshman Seminars
Warren Huff

In recent years many U.S. colleges and universities have created programs for incoming freshmen to address a growing range of issues, including the unacceptably large number of first-year students who do not return for their second year. At the University of Cincinnati, this effort has taken shape as the Freshman Year Experience (FYE) program.

In the College of Arts and Sciences, the FYE program was designed with many of the same kinds of components found elsewhere, including learning communities, personalized advising and freshman seminars. These seminars typically follow one of two different models: either a discipline-oriented seminar led by faculty members or a college survival course taught by student affairs personnel who alert students to issues, such as time management, approaches to studying, the use of technology for effective learning and how to access the many resources of the institution. The college opted for both formats and proceeded to invite faculty members to offer seminars in their respective disciplines. Enrollments were capped at 20 to ensure high personal contact with the instructor. I proposed a course entitled “Investigating the Earth” and further capped the enrollment at 10 so that getting everyone in a van for a field trip would not be a problem. The course was accepted and we were off and running.

The principal concept in “Investigating the Earth” is to learn by doing, not a radical idea by any means, but nevertheless a challenging one where first-year students with no geology background are concerned. Class meetings are generally held either in the field or in the lab.

At the first class meeting, I present each student with a hand-specimen-sized rock, providing only the rock’s geographic origin. I then explain to the students that their assignment by the end of the 10-week fall quarter is to present a 20-minute PowerPoint presentation on their rock — telling us what kind of rock it is, how it formed, what it is made of and how it fits into the geologic history of the area from which it came. The resources available to the students include a textbook, the library, the Internet and, most importantly, the lab. The students have homework assignments after each class that include readings in the text plus either an Excel-based assignment that I have designed or one of Gary Novak’s virtual activities. The exercises are graded, but otherwise there are no exams.

First stop: the field. Within 15 minutes of the start of class, we head outside with a digital camera to photograph each specimen. A half-hour later, we have finished and we head to the saw room preparing to cut slabs for thin sections. Given the time limitations, the slabs are sent off to a commercial thin-section lab that has about a two-week turnaround time. (The FYE program pays for the cost of the sections.) I tell the students to wear comfortable clothes for the next two class periods because they will be in the field.

At the beginning of the second class, we pile into a van for the first field trip. Cincinnati lies in the midst of Late Ordovician platform carbonates and shales, rich in invertebrate fossils, so our first trip is to look at these strata up close. We have Richard Davis’ excellent pamphlet, Guide to the Rocks and Fossils of the Cincinnati Area, handy and students learn how to tell limestone from shale and trilobites from crinoids from brachiopods. Our second field trip focuses on the Pleistocene history of the Cincinnati area. We look at till, lake clays and outwash, and we talk about how to interpret these deposits. The Ohio Geological Survey has a number of downloadable bedrock and Quaternary maps, which we use in the field.

For the next several class periods we are in the lab, beginning with powder X-ray diffraction of each rock sample. Students break off and pulverize a few grams of rock, and learn to pack the powder into aluminum holders and insert them into the diffractometer. We scan a sufficient two-theta range to pick up most common rock-forming minerals, and students are given the choice of plotting their scans directly or downloading the data into an Excel spreadsheet.

At this stage, much work is one-on-one, although we still come together on a regular schedule to discuss what we have done and what’s coming next. I give the class a number of reference Web sites to get started, and they are encouraged to do their own searching as well. Group meetings often consist of discussions about the concepts that the students have encountered and of identifying portions of the textbook that address those areas.

When the thin sections arrive, we set up petrographic scopes to look at them. This is always an exciting experience and we use one scope with digital projection capability so the group can also look at each section in turn. We take digital photos of each section to add to an online data collection. The last several class meetings are devoted to class presentations. The students are now fully engaged in their projects, and the atmosphere borders on electric as each one, in turn, gets up for their presentation. The experience has a powerful bonding effect on the group.

Although the University of Cincinnati has been at this for only a short time, overall college retention has increased by more than 5 percent. Our anecdotal evidence indicates that the students who benefit the most from freshman seminars are those who are talented but who were underachievers in high school. And we always draw one or two geology majors out of each class. It’s a double bonus — getting more people excited about geology, while inspiring a new generation of geologists.

Huff is a geology professor at the University of Cincinnati and a Geotimes corresponding editor. E-mail:


Gary Novak's Web site, Virtual Courseware for Earth and Environmental Sciences

Back to top

Untitled Document

Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers

© 2019 American Geological Institute. All rights reserved. Any copying, redistribution or retransmission of any of the contents of this service without the express written consent of the American Geological Institute is expressly prohibited. For all electronic copyright requests, visit: