The
beginning of the new millennium marked the 200th anniversary of the discovery
of two types of Jurassic dinosaur tracks in Massachusetts, in 1802. At that
time, dinosaurs were unknown. They would not be named until 1841. The three-toed
tracks, later named Grallator (meaning stilt-walking bird), were
dubbed the trail of Noahs raven and attributed to unknown
ancient birds. We now attribute them to theropods two-legged carnivorous
dinosaurs that paleontologists consider the ancestors of birds. The larger four-toed
tracks, later named Otozoum (meaning giant animal), were very enigmatic
at the time but are now attributed to prosauropods early relatives of
the giant sauropods, more familiarly known as the long-necked, long-tailed brontosaurs.
This dinosaur print is one of thousands
at the Twentymile Wash Dinosaur Tracksite, located at the Grand Staircase Escalante
National Monument in Utah. Discovered in 1998, the site contains dinosaur footprints
preserved in the upper part of the Entrada Formation. Image courtesy of Brent
Breithaupt.
These early finds, like many footprint finds today, belonged to creatures previously
unknown or were found before the discovery of fossilized skeletal remains of
the trackmakers representing but one unique contribution of dinosaur
tracks to the dynamic study of the ancient world.
Paleoartist Greg Paul (see story, this issue) once suggested
that dinosaur trackways are the nearest thing we have to dinosaur movies, emphasizing
the dynamic nature of tracks made by living animals, in contrast to the death
and decay represented by fossilized skeletons. Although much neglected until
a generation ago, the burgeoning field of dinosaur and vertebrate tracking
ichnology has made rapid strides in the wake of the dinosaur renaissance
that has been taking place over the past few decades. With more track discoveries
has come a greater understanding of how dinosaurs moved and lived, and the discoveries
have also helped capture the imagination of the public.
Forging a trail
The
dinosaur renaissance of the 1960s and 1970s reflected a new ecological-environmental
awareness that infused paleontology and sedimentary geology with a more dynamic
and holistic mindset (see story, page 18). Almost overnight, dinosaurs were
transformed from defunct, extinct failures into athletic superheroes that had
suppressed mammalian evolution for much of the Mesozoic. Debate over the posture,
gait and speeds of dinosaurs peppered the pages of Nature and other prestigious
journals, and, despite a scarcity of known tracksites, footprints from a few
important sites figured prominently as concrete evidence supporting these revolutionary
new interpretations.
David Attenborough (left) and a BBC crew
films at the 160-million-year-old megatracksite in the Entrada Formation near
Moab, Utah, made by a carnivorous dinosaur. Image courtesy of Martin Lockley;
taken in 1987.
By the mid-1970s, paleontologists began using trackways of long-striding bipedal
dinosaurs to estimate the maximum speeds they attained. A 110-million-year-old
theropod trackway from Texas provided an estimated speed of about 43 kilometers
per hour (26 miles per hour) as fast as (or faster than) Olympic sprinters.
Another theropod trackway, found in China in 2001, provides a close second,
representing a silver-medal performance at an estimated 41 kilometers per hour.
To date, almost all reported runners were theropods, suggesting high activity
levels among these carnivorous predators, at least for the short distances over
which trackway segments have been recorded. Narrow-gauge brontosaur trackways,
more like those of elephants than wide straddling hippos, dispelled the archaic
notion that the animals were cumbersome, primitive swamp-dwellers unable to
support their weight on land.
Despite these discoveries, it was not until the 1980s that people reported many
large, previously overlooked tracksites, and dinosaur ichnologists began publishing
detailed maps of large sites with thousands of footprints comprising the trackways
made by hundreds of different individuals representing a variety of identifiable
groups. These important sites shifted the emphasis from individual behavior
to ideas about social behavior, especially among gregarious sauropods and large
ornithopods (duckbilled dinosaurs) that evidently sometimes traveled in large
herds.
Such tracksites also proved useful for understanding the relationships between
predators and prey, and for determining the preference that various dinosaurs
and other vertebrate groups had for particular habitats. The rock type in which
the tracks are found, or facies, helps reconstruct ancient environments and
ecology.
Research in these and other new areas has gathered increasing momentum. Computer
models, for example, now help us visualize the biomechanics of sauropods
showing variations in posture, locomotion and weight distribution by
modeling the anatomy of the track-making animals. The rapid pace of discovery
has also established the basic morphology of tracks of other previously unknown
dinosaur groups such as the horned dinosaurs (ceratopsians) and the two-toed
sickle-clawed raptors (dromaeosaurids).
The dinosaur tracks renaissance has also accompanied revolutions in the study
of pterosaur and bird tracks. Debate over the distinction between crocodile
and pterosaur tracks, and whether the latter walked on two legs or four legs,
raged in the mid-1990s, even making the pages of Time magazine. The verdict:
Pterosaurs were quadrupedal and their tracks were common worldwide, in some
cases forming extensive track assemblages, or ichnofacies.
Likewise, bird tracks were once thought rare in the Mesozoic Era, 240 million
to 65 million years ago, with only three sites known prior to 1980. Now sites
are widely known, especially in Asia, and prove an early origin for shorebird-like
species dating back to the middle Mesozoic, 145 million years ago, if not earlier.
Mammal-like reptile tracks and associated spider and scorpion trails are also
abundant in the Permian through the middle of the Mesozoic. Such track distribution
patterns suggest a distinctive desert dune-field paleoecology, dominated by
small vertebrates including mouse- and squirrel-sized protomammals and pigeon-
or crow-sized dinosaurs.
Such track diversity reminds us that many of these track-rich formations contain
few if any fossils. Even in cases where an appreciable fossil record exists,
it usually lacks most of the small vertebrates and invertebrates.
The track record thus fills major gaps in the fossil record in many regions.
For example, in the Jurassic of the western United States, only the well-known
Morrison Formation has a significant record of vertebrate body fossils, including
many brontosaurs. Most other well-known formations, including the Wingate, Kayenta,
Navajo, Entrada and Summerville, are almost completely devoid of vertebrate
remains, except for a few sites and isolated finds, celebrated for their very
rarity.
By contrast, each of these formations has yielded dozens, even hundreds, of
tracksites that consistently produce characteristic and consistent patterns
of ancient ecology in formations previously dismissed as barren.
For this reason, the vertebrate fossil record of many classic national monuments,
parks and recreation areas, from Arches and Monument Valley to Capitol Reef,
Glen Canyon and Zion, is often based almost exclusively on the track record.
Abundant tracks are recorded in many other outcrop-rich protected park areas
elsewhere around the world, especially in semi-arid and mountainous or coastal
sections, such as northeastern Spain, Portugal, northern China and South Korea.
Further down the trail
By
studying the trackways not only for clues about how dinosaurs lived but also
for clues about where they lived, ichnologists have vastly increased understanding
of the ancient planet. Combining particular track types and facies, they have
discovered what type of environments certain dinosaur species favored. For example,
brontosaur tracks are typically found in limestone that represents tropical
coastal plain systems, whereas the tracks of large ornithopod dinosaurs such
as Iguanodon, and the shield- and spike-bearing ankylosaurs are much more typical
of temperate, higher latitude, sand-, mud- and coal-dominated coastal systems.
The Jurassic Museum of Asturias in Spain
is built in the shape of an ornithopod footprint and contains one of the largest
collections of Jurassic dinosaur tracks in the world. The La Griega beach along
the Coast of Asturias is in the background, and the rocks at the high-tide mark
have Jurassic dinosaur footprints. Image courtesy of Jose Carlos Garcia Ramos.
One of the most striking conceptual shifts has surrounded the recognition of
megatracksites or dinosaur freeways regionally extensive
track-bearing units, sometimes confined to a single surface. These freeways,
ranging from less than 10,000 to more than 100,000 square kilometers, provide
data on the type and distribution of thousands of trackmakers. They also provide
insight into changing coastal dynamics and appear to be related to the buildup
of sediment on coastal plains as sea level rose.
At least a dozen such megatracksites have been reported since the first were
recorded in the late 1980s, and several have been placed in proper stratigraphic
context. Trampling, or dinoturbation, has also been recognized as
a widespread phenomenon that has a huge impact on the substrate. Some formations
have hundreds of track-bearing layers indicating that reworking by trampling
or plowing by vertebrate feet can affect much of the entire rock
volume in some formations.
As interesting as such large-scale megatracksite phenomena are for geologists
in general, perhaps the most revolutionary recent application of dinosaur tracks
has been in the area of paleogeography, especially in the Mediterranean. The
discovery of dinosaur tracksites in areas thought to be open marine basins or
isolated Bahama-like platforms has prompted some authors to call for a major
reevaluation or rewriting of the geodynamics of parts of the region during the
Mesozoic, 240 million to 65 million years ago. Either dinosaurs somehow crossed
deep seaways between widely separated landmasses, or our reconstructions of
ancient Mediterranean geography are simply wrong.
Maintaining the trail
The most striking aspect of the dinosaur tracking revolution has been the discovery
of vast numbers of sites that require in situ protection for scientific study
and public education (see sidebar). Unlike bone sites
that are frequently destroyed or buried as excavated skeletons are removed to
museums, most dinosaur tracksites, some larger than football fields, have to
be preserved in place. As already noted, these sites number in the hundreds
in many nations, and add up to thousands on the continental scale. For example,
about 250 recorded sites are in Colorado, and more than 100 are in the small
province of La Rioja, Spain. Equally high densities are typical of many other
areas, including Utah and the southern coastal region of Korea.
In some cases, large-scale mining operations have exposed large tracksites,
often in rugged mountainous terrain in the high Andes, Rockies, Alps or Pyrenees.
Such sites pose special logistical, conservation and political problems. First,
they are dangerous places in which to work, requiring specialized skills and
equipment (expert mountaineers and helicopters). Second, they are often in imminent
danger of complete collapse or highly accelerated rates of erosion. Third, their
long-term conservation may be prohibitively expensive and thus administratively
and politically problematic.
Technology, however, can help address these challenges. A 3-D landscape imagery
technique known as photogrammetry can be employed at all scales, from single
footprints, to large sites of several acres and beyond, to the scale of megatracksites.
While contour maps of individual tracks are visually pleasing and can even be
used to print out 3-D replicas, photogrammetry may have much greater potential
for accurate mapping of large sites, especially those where access is difficult
and complex topography defies mapping by traditional compass, tape and grid
methods.
The abundance of dinosaur tracksites has generated significant research collections,
interpretive centers and museums. For example, the Dinosaur Tracks Museum at
the University of Colorado in Denver, the St. George Dinosaur Discovery site
in southwestern Utah and the Jurassic Museum of Asturias in Spain (built in
the shape of a giant footprint), have all sprung up in the last few years. All
contain thousands of footprint specimens and strong links to local interpretive
trails and displays, such as Dinosaur Ridge in Colorado. Such museums and associated
interpretive sites and trails each receive hundreds of thousands of visitors
annually on the merits of tracks alone, often without the added attraction of
large dinosaur skeletons and models.
End of the trail
The rise in the scientific study of dinosaur footprints epitomizes the dynamic
field of paleontology, as it covers almost half of the entire track record of
vertebrate life on land creating an evolutionary path through time. From
the oldest trails of invertebrate and vertebrate animals (respectively about
450 and 400 million years old), we are led through the middle era (Mesozoic)
age of dinosaurs, pterosaurs and early birds, to the age of mammals (65 million
years ago to the present) and our own hominid ancestors, the latter represented
by the footprints of 3.5-million-year-old Tanzanian Australopithecus
now carefully buried for protection and study by future generations.
These eternal trails in the sands of time are highly evocative of our ancestry
and among the spectacular legacies left us by the evolving geological landscape.
Henry David Thoreau once stated: If I were to make a study of the tracks
of animals and represent them by plates, I should conclude with the tracks of
man. This statement seems prescient in the light of recent finds of purportedly
40,000-year-old hominid tracks from Mexico that suggest colonization of the
Americas more than twice as early as previously thought (see story,
this issue). Again, we see footprints opening a new field hominid tracking
of special interest to our own origins and prehistoric wanderings. Such
rewriting of the tracks record has progressively recast our view of the ancient
landscape and physically integrated it into our present cultural landscape.
Trackway
preservation
In December 1999, a high school student ran across some unusual footprints
and tracks embedded in the rocks at the Union Chapel Coal Mine in northwestern
Alabama. He told a teacher, who happened to be a member of the Alabama
Paleontological Society, about the find, setting in motion legal, legislative
and scientific battles. The conservation effort ended last year, and in
March, the Alabama Department of Conservation and Natural Resources dedicated
the new Steven C. Minkin Paleozoic Footprint site. The site is now open
for scientific research and fossil collecting. Megan Sever |
![]() |
Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers ![]() |