Untitled Document

Geomedia offers each month's book reviews, list of new books, book ordering information and new maps. 

Check out this month's On the Web links, your connection to earth science friendly Web sites. The popular Geomedia feature is now available by topic.

Selling extreme life on the extreme screen

Touring the planet: Earth: An Intimate History

On the Shelf:
Climate Change Picks from Kim Stanley Robinson

New View of North America

Selling extreme life on the extreme screen

At one point in the movie Aliens of the Deep, shown in 3-D, the bell of a translucent jellyfish undulates out of the screen toward the viewers in the IMAX theater. A sheet of gelatinous, translucent ghostly white skin ripples in waves, hovering before the audience, and the image is so detailed that the surface crenulations are clearly delineated, looking a little like crinkles on the surface of a cantaloupe. The unknown species’ organs appear and disappear behind its waving bell, and wispy tentacles are barely visible.

The clarity and closeness of the deep sea creatures in Aliens of the Deep is one of the main reasons to see what is, in the end, a beautiful film, half documentary-style and half fantasy. Viewing the movie feels like taking a major trek to the bottom of the sea — a trek I took in April, while viewing the movie with several scientists in New York City.

As part of a team of scientists taking part in Aliens of the Deep, Maya Tolstoy and Kevin Hand had their first opportunities to dive in submersibles, to visit deep sea hydrothermal vents. Photo copyright of Buena Vista Pictures and Walden Media, LLC.

Produced and directed by James Cameron (of Titanic fame, among other big-budget blockbusters), this IMAX adventure follows Cameron and a team of young scientists, from biologists to oceanographers, who travel in submersibles to explore deep sea vents and the creatures that live at such extremes. Using four submersibles — which is often more than most scientists get access to — the team visited several vent sites with names like Snake Pit and the Lost City, during two ocean-going voyages in 2003 (see Geotimes Web Extra, March 10, 2005).

At one point, an animated sequence shows the exact scale at which these intrepid explorer-scientists are diving to get to their targets: From a long shot of Earth, the eye of the camera plummets down through the atmosphere, plunges past the ocean’s surface and speeds down to the kilometers-deep trenches “that ring the planet like seams on a baseball.” The sea chimneys tower like immense stalactites, with the tiny animated submersibles flitting about them.

The film’s narrative follows the scientists at work, including biologist Dijanna Figueroa, a graduate student at the University of California, Santa Barbara, who starts off the journey by describing the premise of the sun’s life-sustaining energy. Only in the 1970s, after the first discoveries of deep ocean vents and the chemotrophic — or chemical-eating — communities that live there, did scientists suspect that life could exist without photosynthesis. Cameron uses this point to establish a potential model not only for how life started on this planet, but also how it may have begun elsewhere.

For Maya Tolstoy, an oceanographer and geophysicist at Columbia University’s Lamont-Doherty Earth Observatory, the trip with Cameron was a “ship of opportunity,” allowing her to deposit her seismometers on the ocean floor within three months of getting funding — more quickly than had she followed the calendar for a normally scheduled cruise. She says that going down in a submersible for the first time also gave her the chance to see where she was sending her instruments, something she had never done before. “It’s a privilege to do this kind of work,” Tolstoy says.

Kevin Hand, a theoretical astrobiologist and post-doc at Stanford University and the SETI Institute, had never gone to sea before, and his first experience gave him the chance to explain to the audience and his biologist shipmate how a system like the hydrothermal vents does not necessarily need Earth-like plate tectonics — if only in a brief reference. “All you need is seawater interacting with hot rocks,” he said about halfway through the movie, in the first blatant reference to geology.

Tolstoy later clarified what Hand meant after we watched the movie: “On Earth, much of our faulting is due to plate tectonics,” she says, so the water can circulate in deep rocks that are still warm. But faulting “can be caused by other stress changes, such as ice loading or volcanism,” she says. “You just need an active system,” such as the one described in the film’s excellent animated sequence on the Jupiter Icy Moons Orbiter (JIMO) project.

Jupiter has an immense gravitational effect on its moons, causing them to pulsate as they orbit the huge planet. That tidal pull causes crustal cracking and creates frictional heat, giving rise, for example, to Io’s monstrous volcanoes. JIMO has the potential to explore Jupiter’s satellites Ganymede, Callisto, Io and — the most alluring — Europa. That moon has a skin of ice that may harbor an ocean beneath and is the most likely of all the candidates in the solar system to harbor life, even if it will probably be only microbial.

“If you find microbes,” says Michael Rampino of New York University, who watched the film with me, “that would be fantastic enough.”

Cameron’s excitement at the prospect of meeting new life on Earth and elsewhere is palpable throughout his film, perhaps most embodied by some flights of fancy toward the end, which depict digitally created octopus-like extraterrestrials in a glowing underwater city (and which irked some reviewers and scientists). “We have to go there” is the cry, both to the bottom of the ocean and to space to see what can be found, a sentiment voiced by scientists and Cameron alike. Overall, I walked out feeling not only exhilarated and exhausted by my virtual journey, but also feeling that Cameron is a good salesman of ocean and space exploration.

But some people aren’t buying into it. Because of its references to the origins of life and evolution, several IMAX theaters have passed on Aliens of the Deep and what could be considered a companion to this film, Volcanoes of the Deep Sea. A block of theaters in the South, many of which are associated with science centers and museums, were “reticent to take the films,” says Rich Lutz of Rutgers University in New Jersey, the science director for Volcanoes of the Deep Sea. The theaters claimed that the two movies “wouldn’t sit well with an audience that was creationist,” he says.

The most vocal in its rejection of the films was the Fort Worth Museum of Science and History in Texas, Lutz says. After a New York Times article “spurred a lot of attention [regarding] how important it was to have films like that, referring to evolution,” Lutz says that “they got a lot of phone calls.” The center’s new director and board reversed the decision, as did the Discovery Place in Charlotte, N.C. Volcanoes’ director Stephen Low introduced the film at its first showing there in April. The controversy may prompt other IMAX theaters to show the films or bring them back into rotation, Lutz says; Aliens has been shown at 24 IMAX theaters around the United States, and Volcanoes at eight, plus one in Taiwan.

Cameron gave some funding to Volcanoes of the Deep Sea, but Aliens of the Deep visits many of the same places, and the overlap in subject matter and release dates has created some awkwardness in the production and scientific communities. Still, the two are “a nice one-two punch in terms of oceanographic research … and the wonders of science,” Lutz says. “[Cameron’s] film certainly can excite the younger members of the audience about science,” while serving as a precursor to Volcanoes of the Deep Sea, for those who are interested in finding out more.

Perhaps best of all of Cameron’s pitches is that he shows what scientists do, Rampino says. “My students would think it was cool,” he says. Cameron conveys a “sense of exploration” and excitement by showing scientists in action, using robots and other tools available. “I’d be excited, too,” Rampino says.

The high school students in the audience the day we saw the movie in New York City were all enthusiastic, if a bit turned off by the fantasy ending. Of the half dozen I spoke to, the boys were very pro-science and exploration. The girls, however, were less so, despite all the female scientists shown larger than life: The girls wanted more scares and 3-D tentacles reaching out to them from the bottom of the sea.

Naomi Lubick


"Revisiting the Lost City," Geotimes Web Extra, March 10, 2005

Back to top

Book review
Earth: An Intimate History

by Richard Fortey,
Knopf, 2004.
ISBN 0 3754 0626 3.
Hardcover, $30.00.

Touring the planet
Callan Bentley

In Earth: An Intimate History, paleontologist Richard Fortey of the Natural History Museum in London takes readers on a tour of his favorite planet. Don’t let its 400-plus pages scare you off — this beautiful book is a compelling overview of the wonders of geology around the world, melded with a memoir of the author’s own experiences.

Reading Earth brings two great joys. The first is that Fortey makes some great connections between geology and day-to-day human life. Take for example, the origin of the “dollar” in a silver mine in what is now the Czech Republic. The village is Joachimsthal, and its mine was known as Joachimsthaler. This moniker was shortened to “thaler” to describe the coins minted from Joachimsthaler silver. “Thaler” became “daler” in Dutch, and eventually the word was handed down to us as “dollar.” This etymological investigation provokes Fortey to muse upon the nature of metals, minerals, economic geology and world trade.

Many of the connections he draws are ruminations on how geology controlled human history, and he weaves in quotes from many literary sources as he lets the planet tell its tale. In Italy, for example, the mythology of doom that surrounds Vesuvius and its volcanic brethren ultimately informed geologic studies there. Throughout the book, gorgeous color plates illustrate some classic localities from the rock record, as well as bizarre images from hotel labels, coins, billboards, vases, temples, lava lamps and the like — all of which are somehow tied to the history of the planet. Fortey’s greatest strength as an author is his delight in sharing these connections. All of his readers will revel in the myriad ways our civilization has been shaped by geological nuance.

The second great treat is that this “intimate history” will be accessible particularly to earth scientists. So much of a scientist’s reading consists of dry technical writing. In comparison, it is an unmitigated delight to read a broad view of the planet’s tectonic development written in a fluid and uncramped style. (Fortey is a trilobite specialist, but most of this book focuses on tectonics.)

Fortey waxes philosophical at almost every turn, but his musings never take priority over the science. In Hawaii, for example, the touristy towns force him to ponder the word “Eden,” while the multicolored beaches provoke a contemplation of the deeper meaning of sand. Later, in a chapter on the Alps, he practically squeals with delight over his visit to the Glarus nappe, a classic locality showing ancient rocks thrust over the top of much younger strata.

Earth is not just the story of the planet, however; it is also the story of geologists. Fortey enthusiastically recounts his scientific predecessors’ brilliant fieldwork and clever deductions on the movements of rocks. By considering each aspect of the process — observation, deduction and appreciation — he makes geology an insightful meditation on the lessons of our planet.

Fortey’s U.K. pedigree shows through in his writing. Quaint British expressions like “pick a back” and “jiggery pokery” grant a quirky, archaic flavor to his prose (especially to American ears). Add to this his reminiscences about his quintessential undergraduate textbook (by Arthur Holmes), which pop up again and again, and you never lose sight of the fact that this book was written by a Briton.

Fortey is at the top of his game with this book. His intimacy with the planet’s history is a treat to witness. Earth is for anyone who has ever paused on a walk outside, taken a breath of fresh air and reflected with immense satisfaction on how much fun geology is.

Bentley is a Geotimes contributing writer and a visiting geology professor at George Mason University.

Back to top

On the Shelf
Climate Change Picks from Kim Stanley Robinson

In an interview with Geotimes, sci-fi author Kim Stanley Robinson mentioned the following publications as key background reading for his research for Forty Signs of Rain, his recent fiction book that includes a future climate vastly different from today’s.

The Two-Mile Time Machine: Ice Cores, Abrupt Climate Change and Our Future
by Richard B. Alley, Princeton University Press, 2002. ISBN 0 6911 0296 1. Paperback, $18.95.
Alley gives an account of fluctuating climate throughout geologic history, which he and others have determined using annual layers from ice cores. Suggesting that our temperate climate may be coming to an end, he explains what we need to know to understand climate change.

The Long Summer: How Climate Changed Civilization
by Brian Fagan, Basic Books, 2004. ISBN 0 4650 2281 2. Hardcover, $26.00.
Climate change is not a new phenomenon; humans have adapted to change throughout history. (See Geotimes, June 2004, for a complete review of The Long Summer.)

A Brain For All Seasons: Human Evolution and Abrupt Climate Change
by William H. Calvin, University of Chicago Press, 2003. ISBN 0 2260 9203 8. Paperback, $15.00.
Calvin takes us around the world and back in time to discover how our ancient ancestors survived climatic changes evolutionarily, by increasing their intelligence and complexity.

Abrupt Climate Change: Inevitable Surprises
by the Ocean Studies Board, National Research Council, 2002. ISBN 0 3090 7434 7. Hardcover, $49.95.
This comprehensive report addresses climate change and its impacts, as well as possible implications for the future. To read more about the report, see the article “Cracking Abrupt Climate Change,” which appeared in the February 2002 Geotimes.

Back to top

New View of North America

For the first time, a geologic map of North America portrays the relationship between the geology of the continent and the geology of ocean basins. The previous geologic map of North America, printed in 1965, was published before the general acceptance of plate tectonics and when the geology of seafloors was largely unknown. The new map provides a comprehensive perspective of the geology of the region at the conclusion of the 20th century.

The new 1:5,000,000-scale geologic map, The Geologic Map of North America, covers about 15 percent of Earth’s surface. It distinguishes 939 geologic units, of which 142 are offshore, and includes locations of volcanoes, calderas, impact structures, axes of submarine canyons, spreading centers, transform faults, magnetic isochrones and subduction zones. The compilation of a geologic map of such a large area and detail was complex and took almost 25 years to complete — spanning a time when cartography changed from traditional methods to digital techniques.

A 28-page text accompanies the map that discusses the history of small-scale geologic maps of North America dating back to the 18th century, how the current map was made and the sources of information. This text also explains how to use the map with its wealth of information in geologic map units and map symbols.

A map of this scale and detail with a continuation of geology from onshore to offshore should provoke new ideas on geologic processes through interpretation of geological patterns. Also, the map will play a role in training earth scientists and aid in planning new research.

The map was a joint effort of the Geological Society of America, U.S. Geological Survey, Geological Survey of Canada and the Woods Hole Oceanographic Institution, as part of the Decade of North American Geology project.

Randall Orndorff of the U.S. Geological Survey compiled the Maps column this month, with contributions from John C. Reed Jr., co-author of the new North American map.

The Geologic Map of North America, Continental Scale Map 001, comes as 3 color sheets (northern, southern, and legend), 74 X 40 inches, and can be obtained folded for $150 (GSA member price $120) or rolled for $155 (GSA member price $125) and includes a 28-page text from GSA Sales and Service, P.O. Box 9140, Boulder, Colorado 80301-9140, or from

Back to top

Untitled Document

Geotimes Home | AGI Home | Information Services | Geoscience Education | Public Policy | Programs | Publications | Careers

© 2022 American Geological Institute. All rights reserved. Any copying, redistribution or retransmission of any of the contents of this service without the express written consent of the American Geological Institute is expressly prohibited. For all electronic copyright requests, visit: